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Abshcl. W have used Brillouin seatlering to measure the thifleen independent elastic 
moduli of musmvite mica. me moduli reflect the monodinic Symmetry oP the -1, 
and demonstrate the anisotrupy of the interlayer and intralayer bonding. ?he decrease 
in the acoustic velodty with increasing temperature is dominated by the decrease in 
the moduli that depend on interlayer banding, dving an estimate of the tempemlure 
dependence of Ihose moduli. 

1. Introduction 

Mica, the familiar layered silicate mineral, was once q a r d e d  as a natural resource 
of tremendous importance. In 1945, researchers for the (then) National Bureau of 
Standards declared it ‘one of the most important strategic minerals in time of war, and 
indispensable in some modern applications in time of peace’ [l]. While it has largely 
been replaced by other materials in its former applications in capacitors, airplane 
spark plugs, and the like, it continues to be used in ceramic composites and as an 
electrical insulator. In such applications the elastic properties of the crystal can play 
an important role. 

The continuing interest in mica is nevertheless not based primarily on its 
usefulness, but on its characteristics as a highly anisotropic crystal. Like other 
layered materials such as graphite, transition-metal dichalcogenides and oxide 
superconductors, its properties are governed by the contrast between the strong 
intraplanar bonding and the much weaker interplanar forces. Thii anisotropy governs 
the mechanical properties as well as the optical and electrical characteristics, and is 
reflected most obviously in the easy cleavage parallel to the basal plane. 

It is normally assumed that the elastic moduli will reflect the weak bonding along 
the cleavage planes, but furthermore the assumption is also often made that the 
in-plane anisotropy will be small and that the material, though of a monoclinic 
crystal structure, can be treated as possessing hexagonal symmetry. Existing elastic 
modulus data on muscovite are consistent with thii expectation. However, because 
in a recent study of the monoclinic layered compound As2& [Z] we found that the 
elastic moduli in no way reflect this ‘expected‘ symmetry and that some of the in- 
plane moduli were actually smaller than the perpendicular ones, we undertook the 
present investigation of muscovite. We have used Brillouin scattering to measure the 
sound velocities, thereby obviating the difficulties typically encountered in performing 
ultrasonic measurements on fragile materials like mica. 
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The many minerals under the general classification ‘mica’ consist of negatively 
charged silicate layers bonded together by interlayer cations [3]. Each layer consists 
of two tetrahedral sheets sandwiching one octahedral sheet, with apical oxygen atoms 
shared between the tetrahedra1 and Octahedral sheets. The basal oxygens of the 
tetrahedral sheets form a hexagonal mesh on the outer surface of the layer, and the 
interlayer cations sit in the cavities at the centres of the six-membered Mgs. 

Muscovite is a dioctahedral mica, i.e. of the three octahedra which form a repeat 
unit within the layer, two have octahedral cations (AI3+) at their centres. The 
repulsion of the cations in adjacent Octahedra leads to shifts and twists in the anion 
bonds, which break the biaxial symmetry of the layer [4]. One fourth of the tetrahedral 
cations are AI3+ rather than S i e ,  which gives a net negative charge to the layer and 
also expands the tetrahedral sheets, forcing the tetrahedra to rotate in the (001) 
plane to accommodate the smaller dimensions of the octahedral sheet. Potassium 
cations reside between the layers and bind them together, leading to the chemical 
formula KAI,(AISi,)O,,(OH),. The cations in this formula are written in the order: 
interlayer cation-octahedral cation-tetrahedral cations. In the mast common form of 
muscovite, the ZM, polytype which is the subject of this study, successive layers are 
shifted laterally in alternating directions separated by 120°, leading to a monoclinic 
aystal structure with two layers per unit cell. 

Crystals of monoclinic symmetry have 13 independent elasric moduli, namely C,,, 

C, and C, are primanly dependent on the strong covalent bonding within the layers. 
The remaining moduli are governed by the weaker interlayer bonding, and should be 
more sensitive to perturbations caused by temperature, pressure, intercalation, and 
the like. 

C,, C,, C,, C,, Ce, C,,, C,, Cis, C,, C,, C,, and Ca. Of these, C,,, C,, 

2. Experiment 

The samples we used were large, transparent plates of natural muscovite, 
approximately 1 an x 1 cm x 0.89 mm. We produced optical surfaces by cleaving 
the crystals with a razor blade, so the surfaces were (001) planes. 

We made the Brillouin scattering measurements with a multipass tandem Fabry- 
Perot interferometer with 514.5 nm excitation from a single-mode Ar+ laser. We used 
two scattering geometries: buckscalfering, in which the photons enter and exit on the 
same face of the crystal and the phonon propagates roughly perpendicularly to the 
crystal face; and plafelei, in which incident and scattered photons enter and exit on 
opposite sides of a crystal with parallel surfaces, each at 4 9  to the crystal face. In this 
m e  the phonon propagates in the plane of the sample, and it5 direction in that plane 
can be vaned relative to the crystal axes. For backscattering the phonon wavevector 
is given by q = 2nk where n, the effective index of refraction of the medium, is 
an appropriate combination of the principal indices as dictated by the polarization of 
the incident and scattered light and k is the wavevector of the incident laser light. 
For the platelet geometry q = f i k  and is independent of n. For the backscattering 
measurements the Fabry-Perot operated in the 5 + 4 modc, and for the platelet 
measurements in the 3 + 2 mode. 

We made high-temperature measurements in a furnace with the sample in air. 
The temperature, measured with a type K thermocouple, was stable to a precision of 
*3C. Upon heating above 5oo°C the samples took on a silvery black colour, which 
made measurements at higher temperatures impossible. 
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3. Results 

3.1. Room temperature 
The Brillouin frequency shifts U (frequencies of the acoustic phonons) are converted 
to effective elastic moduli C,, according to the usual expression 

2 

ce, = pvz = p (i) 
where v is the sound velocity, q is the phonon wavevector defined in the previous 
section, and we have calculated the density p = 2.832 g using the unit cell 
parameters [5]. For backscattering measurements we used values of the indices of 
refraction n, = 1.552, ng = 1.582 161. 

In the backscattering measurements in the a-c plane, which are restricted to 
propagation directions close to the normal of the cleavage planes, we typically 
observed three modes as shown in figure I(a). live of these modes are of 
quasilongitudinal and quasitransverse character and depend upon six of the thirteen 
independent elastic moduli: C,,, C,, C,, C,, C,, and C,. The third mode is of 
pure transverse character and depends upon the three elastic moduli C,, C, and 
c46. 
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Plgure 1. mica1 Brillouin scattering specua for Iwo scattering geometries. Both Stokes 
and antiStokes spectra are shown and lhe Brillouin scattering peaks are marked with 
arrows. The peaks marked * arise from the unshifted laser Light in zero and h t  order. 
(a) Backscattering geometry with phonon propagation in the a-c plane at an angle of 
1 9 O  h m  the e axis. (b) Platelet geometry with phonon propagation in the a d  plane 
at 4 5 O  ftum lhe a axis. 

The platelet measurements, in which the phonon propagates in the a-b plane, 
yield three modes of mixed character. A typical spectrum is shown in figure l(b). 
These modes depend on nine elastic moduli: C,,, C,, C,, C,,, C,, C,,, C,,, 
C, and C,. A description of how the relationship between the measured effective 
elastic modulus and the individual independent moduli is derived is presented in 
the appendix. Together the a-c and a 4  plane measurements involve twelve of 
the thirteen moduli, omitting only C,. This thirteenth modulus appears in the 
oorresponding expressions for scattering in the b-c plane. 

We have extracted the values of twelve of the elastic moduli from the a-c and 
a-b plane data via a non-linear least-squares fitting scheme using the program EVM 
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17). We fit each set of frequencies to the appropriate propagation directiondependent 
expression for C,, varying the elastic moduli as parameters until we obtained the 
best fit for all the data simultaneously. The weighting exponent ms initially used as 
a free parameter, but when a value very close to 05 was obtained the final fits were 
done with the exponent fixed at 0.5 (in a counting experiment this would correspond 
to Poisson statistics). The uncertainties are taken from the standard deviations of the 
fit. The results of the fits are shown in figures 2 and 3, and the values we obtain are 
given in table 1. The b-c plane data (the only set which involves C,) showed greater 
scatter and were used only to extract a somewhat more approximate value of the final 
modulus. This was accomplished by holding C,, C,, C,, C,, C,, C,, C, and 
C, fixed and varying only C,. The best value obtained appears in the table. 

L E McNeil and M Grimrditch 
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Fryre 2 FSective elastic modulus C, ior 
propagalion m the D S  plane, as a function ob the 
angle between lhe direction of propagation and the 
c axis. The h e s  are fits to the data as described 
in the text. 
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Elastic modulus b l u e  (GPa) 

c11 176.5i1.1 
Cn 179.5* 1.3 

c44 lS.Of0.3 
Gs 13.lrtO.Z 

CY 47.7f 1.2 
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c35 -0.7iO.S 
C& 0.7rtO.S 

Ca m.gio.6 

C& m.7fo.6 

C U  m o i  1. I 

Flgum 3. Effective elastic modulus C, for 
propagation in lhe "4 plane, as a function of the 
angle beetween lhe direction of propagation and the 
a axis. ?he lines are fits U1 the dam as desaibed 
in the W. 

3.2. Elevated temperatures 

We have measured the Brillouin frequency shift as a function of temperature in the 
backscattering geometry in the a-c plane with the phonon propagation direction 
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inclined at 2 4 O  from the c axis inside the crystal. For propagation in this direction 
all three modes are observable. We have also taken measurements for propagation 
along the e axis, for which only the longitudinal mode is observed. The variation of 
this frequency with temperature was identical to that of the longitudinal mode at 24". 

In order to calculate the effective elastic constant from the frequency shift, the 
values of the density p and refractive index R as a function of temperature are 
required. Typical thermal expansion coefficients perpendicular to the cleavage plane 
recorded for muscovite mica [l] are in the range a1 = 13-17 x 10-6Dc-' in the 
temperature range 2O-30OoC, and 1624 x over 3CiMOOnC Parallel to the 
cleavage plane the same source reports values of aII = 8.0-12 x Dc-l in the same 
temperature range, with the coefficient increasing wth temperature. The expansion 
perpendicular to the plane is thus approximately twice that parallel to the plane at all 
temperatures. We have used the average values for the expansion reported for each 
temperature range, and taken 

d In p/dT = -(2dall /dT + da, /dT). 

Tb correct the index of refraction we have used the simple Loren&-Lorenz formula 
(n2 - l ) / ( p ( n 2  + 2)) = constant. Although it may appear that the uncertainties in 
the thermal expansion coefficients and the simplicity of the Lorena-Lorenz correction 
could lead to large errors, since neither of the corrections exceeds - 2% the 
uncertainties in the corrections lead to negligible errors. Including both corrections 
(which are of opposite sign in their effects on the modulus) we obtain the values shown 
in figure 4. The quasilongitudinal mode, which is dominated by C, at this angle, 
decreases linearly with increasing temperature with a slope of -1.2 x GPaT-' .  
The pure transverse mode, which is dominated by C,, behaves similarly with a 
slope of -7.2 x lo-, GPaOC-I. The quasitransverse mode, which depends on the 
intraplane bonding, has the smallest slope of -2.3 x IO-, GPaOC-'. The lines 
shown in figure 3 result from the assumption that the variation with temperature of 
the modes can be accounted for by changes in C,, C,,, C, and C,. By setting 
the temperature derivatives of these four moduli equal to -8.0 x IO-, GPaaC-' 
and calculating C, at each temperature, we obtain the lines shown in the figure. 
The exact values of the temperature derivatives should not be taken too seriously, 
since the complicated dependence of the frequencies on the elastic moduli does not 
allow individual moduli to be obtained separately €rom measurements for a single 
propagation direction. However, they do show that the changes in the elastic wave 
velocities with temperature can be attributed primarily to changes in those moduli 
that depend on the bonding between, rather than within the layers of the crystal. 

Figure A Eiiective elastic modulus C, for 
propagation in the a-c plane at an angle of 24' 
to the c axis, as a function of temperature. The 

7s by-:, , - linea are calculated ty setting the temperature 
I S  derivatives of C,, CIS, Cu and C, equal to 

-8.0 x IO-' GPa T-' (see text). 0 ,(*I 200 300 400 500 600 
Temperamm 1%) 
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We have also made temperaturedependent measurements in the platelet 
geometry for a single propagation direction, but the scatter in the results and the 
greater complexity of the relations between the mode frequencies and the elastic 
moduli make detailed analysis difficult. The effective elastic moduli did decrease by 
about 5% in 5Gll''G consistent with the changes in C, and C, obtained from the 
backscattering results. It is worth noting that the index of refraction does not enter 
into the platelet results. 

4. Discussion 

4.1. Room temperature 

There appear to have been no previous Brillouin scattering measurements reported 
for mica, but a few studies of acoustic phonons and of elasticity have been made 
using neutron scattering and mechanical methods. Wada and Kamitakahara [SI used 
inelastic neutron scattering to determine the acoustic velocities along the c and b 
axes of muscovite. In the c direction they obtained values of 4.1 x 16 cm for the 
longitudinal wave and 2.4 x 1 6  an s-l for the transverse wave, with an estimated 
error of 10-15% due to a paucity of data at low energies at the zone centre. These 
compare well with the values we have obtained by Brillouin scattering (which of 
course probes exactly the region of reciprocal space that is difficult to observe with 
neutron scattering). For the quasilongitudinal wave along e we obtain a velocity of 
4.54 x 105 an s-,. In exact backscattering this is the only observable mode, but 
at an angle of 1 2 9  from the e axis inside the crystal in the M plane all three 
modes are obsemble. In this direction the quasitransverse and pure transverse wave 
velocities are 2.66 x 105 cm s-, and 2.48 x 1 6  an s-I, also in good agreement 
with the neutron results. In the platelet geometry we have measured the velocity of 
acoustic phonons propagating aIong the b axis, and our values for the three modes 
are 7.98 x l@ an s-', 4.98 x l@ cm s-*, and 2.31 x I@ cm s-,, which are to be 
compared to Wada and Kamitakahara's values of 7 . 5 ~  1 6  cm s-I and 4.5 x 1@ cm s-I. 
They found the frequency of the lower-energy transverse mode to have a non-linear 
dependence on q, and therefore did not calculate a velocity. This non-linearity is 
characteristic of the so-called 'flexural' mode in layered materials 191. The velocity of 
the quasilongitudinal mode along the c axis was earlier measured by Cebula et U! [lo] 
using the same technique, obtaining a value of 4.5 f0.2 x 16 cm s-,, in agreement 
with our result and with that of Wada and Kamitakahara. 

Alexandrov and Ryzhova [ll] (using ultrasonic techniques) and Caslavsky and 
Vedam 1121 (using flexure) measured the elastic moduli of muscovite. Both groups 
found no anisotropy of the elastic moduli in the basal plane (the latter workers 
achieving this result only for samples free of layer corrugations as measured by B r a g  
diffractionj, indicating that the symmetry of the elastic behaviour was hexagonal. The 
values obtained by Alexandrov and Ryzhova, C,, = 178 GPa, C, = 54.9 GPa, 
C, = 12.2 GPa, C,, = 42.4 GPa and C, = 14.5 GPa, are not very different from 
our Brillouin scattering values for these moduli. At least some of the difference may 
arise from their assumption of hexagonal symmetry, which neglects the contribution 
of other moduli which are non-zero in a monoclinic crystal. For example, the average 
of C,, and C, from our Brillouin measurements gives exactly the Alexandrov and 
Ryzhova value for Cl,. 
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The first observation that one can make about the elastic moduli we have obtained 
is that they do indeed reflect the monoclinic symmetry of the muscovite crystal, 
which is well established from x-ray diffraction. However, the anisotropy within the 
basal plane is small, which may explain why it was not observed in earlier elasticity 
measurements. While C,, and C, differ by barely more than one standard deviation, 
the values of C, and C,,, which would also be equal if the basal plane were elastically 
isotropic, differ by considerably more. The two pairs are also in the same relation, 
i.e. C,, < C, and C, < C,, as would be expected. Also as expected C, < C, 
but the two values are similar. The moduli that would vanish if the symmetry were 
hexagonal, i.e. C,,, C,, C, and C,, all differ from zero by more than one standard 
deviation, and by at least two standard deviations in the case of C,, and C,. C,, 
which for hexagonal symmetry would be equal to (C,, - C,)/2, differs significantly 
from this value even if the average of C,, and C, is used instead of the smaller C,,. 
In this case we would obtain Cg = 65.2 GPa, compared with the measured value 
of 70.7 f 0.6 GPa. It is therefore clear that although the elastic anisotropy within 
the plane is small, the monoclinic symmetry of the crystal is reflected in the elastic 
moduli. 

Contrary to the behaviour previously reported for As,%, the basal plane of mica 
is relatively elastically isotropic. Furthermore, mica exhibits the elastic anisotropy 
between the in-plane and out-of-plane directions anticipated from the cleavage 
behaviour of the crystal. The nearly 300% difference between C,, or C, and C, 
arises from the difference between the strong covalent bonding within the silicate layer 
and the largely ionic bonding that holds the layers together. This is also apparent in 
the even larger difference in the shear moduli: C, is approximately five times C, 
or C,. 

4.2. Elevated Iemperatures 
Much of the decrease with temperature in the moduli which involve interplanar 
bonding can be attributed to the thermal expansion which, as noted above, 
is dominated by expansion in the direction perpendicular to the plane. With 
anharmonicity present, this increased separation of the layers will necessarily decrease 
the force constants of the bonding between them, and thus decrease the corresponding 
vibrational frequencies and elastic moduli. In a quasiharmonic model of lattice 
vibrations the leading term in the temperature-dependent elastic moduli is expected 
to be linear in T [13], with a slope that depends on the particular modulus and on 
the Debye temperature of the material. The fact that the greatest declines in the 
moduli with increasing temperature are in those that involve interlayer coupling is not 
surprising, given that the greatest increase in interatomic spacing takes place between 
the layers. 

The magnitude of the logarithmic decrease in the interlayer elastic moduli with 
temperature, roughly 2.5 x 10-4T-', is somewhat larger than that observed in 
simpler oxide minerals. Fbr example, in AZO3 the compressional moduli C,, and 
C, decrease by approximately 0.9 x T-', and C, by roughly 1.5 x IO-, T-' 
[14]. In orthorhombic forsterite (Mg,SiO,) the logarithmic derivatives range from 
d(lnC,)/dT = -0.6 x 10-40C-' to d(lnC,)/dT = -2.0 x 10-4T-* [IS]. The 
values for cobalt olivine, cO,SiO, are similar, falling in the even more narrow range 
-1.1 to -1.8 x 10-4T-1. The above comparison is also consistent with the changes 
in interatomic spacing with temperature, since in these minerals the linear thermal 
expansion coefficients are in a range similar to or smaller than el, of muscovite. 
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5. Summary 

We have used Brillouin scattering to measure the thirteen independent elastic moduli 
of muscovite mica. The values of the moduli exhibit the monoclinic structure of 
the crystal and reflect the anisotropy between the interlayer and intralayer bonding. 
The temperature dependence of the moduli is dominated by the decrease in the 
interplanar bonding as the spacing between the layers increases. 

L E McNeil and M Grhditch 
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Appendix 

The relationship between the modulus C, measured by Brillouin scattering and the 
individual independent elastic moduli depends on the direction of propagation of the 
phonon and on the symmetry of the crystal. The equations of motion for the crystal, 
together with the restrictions imposed by symmey, result in a matrix involving the 
effective modulus and the direction cosines along the principal axes of the crystal. 
The eigenvalue equations for this manix are the Chriitoffel equations, the solutions 
of which give the desired relation between C, and the individual moduli Ci, as a 
function of the propagation direction. A detailed treatment of this subject can be 
found in any standard reference on elasticity and crystal symmetry [lq. 

For the specific case of propagation in the a-c plane, corresponding to our 
backscattering geometry measurements, the mathematics yields a quadratic equation 
and a linear one. The solutions correspond in the fust case to a quasilongitudinal and 
a quasitransverse wave and in the second to a pure transverse mode. The quadratic 
equation yields effective moduli of the form: 

where the quadratic coefficients b and c depend upon the individual moduli and are 
functions of the angle 0 between the propagation direction of the phonon and the c 
axis 

b = - [ s i n ’ ~ ( ~ , ~  t c,) + 2 s i n e c o ~ e ( c ~ + ~ ~ ~ ) + c o s ~ e ( ~ ~ , ~ t ~ , ) ]  (4 
C =  sin4e(c,,cs5 - c;~ )  +2~in~eCO~e(c, ,c,  - c,,c,,) 

+ ~ i n ~ e c o ~ ~ e ( c ~ ~ c ~ -  c;,tzc,,c, -2c,,c,) 
t z ~ i n e ~ ~ ~ ~ e ( c ~ ~ c , ~  - c,,c,) 
t - c:& (4 
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c,, = c, sinz e + c, cosZe + 2c,sin e COS e. 
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The linear equation for the pure transveme mode has as its solution 

(A4) 

The a-c plane backscatter frequencies therefore depend on nine of the thirteen 
independent elastic moduli: C,,, C,, C,, C,, C,, C,,, Cl,, C, and C,. 

For propagation in the a 4  plane, corresponding to our platelet geometry 
measurements, the effective elastic moduli are the roots of a cubic equation of the 
form 

c:, + actr + PC,, + Y = 0 

= - [ cos2e (GI+ C5.d + sinz e(c, + C,) + C,l 

(As) 

with coefficients 

(4 
P = I ~ 4 ~ ( ~ , l ~ s s  + CIlC, + C,C& - C&) 

+ cos2 e sinz e( c,, c, + c,, c, + c,c, + c,c, 
+cssc,-cf,-c:- c~-2(c,,c,+c,c,+c1,c,)) 
+sin4e(c,c, + c,c, + c,c, - C&)I 

+ cos4esinZe(2cl2cLSc~ +~C,,C,~C, - ~c,,c,c, - c,c:, 
- c,,c& - CIlC& + c,,c,c, + 2c,c,,c, + c,,c,c, 
-2c,c ,c , , )  +~~~~e~in~e(c,,c,c, 
- c,c:, - 2c,,c,,c, + 2c,,c,c, 
+ 2ClZC& - c,c: - 2C,C,C1, 
+ c,c,c,) + sin6e(c,c,c66 - c,c&)]. 

('47) 

-, = -[cos6e(c,,cs5c, - c,c:) 

(As) 

Here 0 is the angle between the phonon propagation direction and the a axis. These 
also depend upon nine of the thirteen independent elastic moduli: C,,, C,, C,, C,, 
C,, C,,, C,, C, and C,. A similar cubic equation involving C,, C,, C,, C,, 
C,, C,, C,, C, and C, is obtained for backscattering measurements in the &c 
plane, so all thirteen of the moduli can be determined from the three experiments. 
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